Journal of Computational Chemistry & Molecular Modeling

ISSN: 2473-6260

Impact Factor: 0.827

VOLUME: 6 ISSUE: 1

Page No: 663-676

Graphyne: Optical Excitations and Charge Distributions


Affiliation

Andreas Ø. Madsen, Sophia V. K. Mikkelsen, and Kurt V. Mikkelsen

Department of Chemistry, University of Copenhagen, Copenhagen, DK-2100, Denmark

Citation

Kurt V. Mikkelsen, Graphyne: Optical Excitations and Charge Distributions(2023)Journal of Computational Chemistry & Molecular Modeling 6(1)Kurt V. Mikkelsen, Graphyne: Optical Excitations and Charge Distributions (2023) Journal of Computational Chemistry & Molecular Modeling 6(1) p:663-676

Abstract

Graphyne is the new wonder material and the optical transitions and charge distributions of different graphyne fragmewnts are investigated using density functional theory calculations.

References

  1. Wallace, P. R. The Band Theory of Graphite. Physical Review 1947, 71, 622-634.

    View Article           
  2. Novoselov, K. S. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669. PMid:15499015

    View Article      PubMed/NCBI     
  3. Phiri, J.; Gane, P.; Maloney, T. C. General overview of graphene: Production, properties and application in polymer composites. Materials Science and Engineering: B 2017, 215, 9-28.

    View Article           
  4. Pham, V. P.; Jang, H.-S.; Whang, D.; Choi, J.-Y. Direct growth of graphene on rigid and flexible substrates: progress, applications, and challenges. Chemical Society Reviews 2017, 46, 6276-6300. PMid:28857098 

    View Article      PubMed/NCBI     
  5. Zhong, Y.; Zhen, Z.; Zhu, H. Graphene: Fundamental research and potential applications. FlatChem 2017, 4, 20-32.

    View Article           
  6. Chakraborty, M.; Hashmi, M. S. J. Wonder material graphene: properties, synthesis and prac- tical applications. Advances in Materials and Processing Technologies 2018, 4, 573-602.

    View Article           
  7. Liu, M.; Zhang, R.; Chen, W. Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Syn- thesis, Properties, and Applications. Chemical Reviews 2014, 114, 5117-5160. PMid:24666160 

    View Article      PubMed/NCBI     
  8. Kong, X.-K.; Chen, C.-L.; Chen, Q.-W. Doped graphene for metal-free catalysis. Chem. Soc. Rev. 2014, 43, 2841-2857. PMid:24500122  

    View Article      PubMed/NCBI     
  9. Zhu, J.; Yang, D.; Yin, Z.; Yan, Q.; Zhang, H. Graphene and Graphene-Based Materials for Energy Storage Applications. Small 2014, 10, 3480-3498. PMid:24431122 

    View Article      PubMed/NCBI     
  10. Srivastava, M.; Singh, J.; Kuila, T.; Layek, R. K.; Kim, N. H.; Lee, J. H. Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 2015, 7, 4820-4868. PMid:25695465 

    View Article      PubMed/NCBI     
  11. Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-686. PMid:21796314 

    View Article      PubMed/NCBI     
  12. Premkumar, T.; Geckeler, K. E. Graphene-DNA hybrid materials: Assembly, applications, and prospects. Progress in Polymer Science 2012, 37, 515-529.

    View Article           
  13. Cranford, S. W.; Buehler, M. J. Mechanical properties of graphyne. Carbon 2011, 49, 4111- 4121.

    View Article           
  14. Ozmaian, M.; Fathizadeh, A.; Jalalvand, M.; Ejtehadi, M. R.; Allaei, S. M. V. Diffusion and self-assembly of C60 molecules on monolayer graphyne sheets. Scientific Reports 2016, 6, DOI: 10.1038/srep21910. PMid:26912386 

    View Article      PubMed/NCBI     
  15. Wang, G.; Si, M.; Kumar, A.; Pandey, R. Strain engineering of Dirac cones in graphyne. Applied Physics Letters 2014, 104, 213107.

    View Article           
  16. Kilde, M. D.; Murray, A. H.; Andersen, C. L.; Storm, F. E.; Schmidt, K.; Kadziola, A.; Mikkelsen, K. V.; Hampel, F.; Hammerich, O.; Tykwinski, R. R.; Nielsen, M. B. Synthesis of radiaannulene oligomers to model the elusive carbon allotrope 6, 6, 12-graphyne. Nature Communications 2019, 10, DOI: 10.1038/s41467-019-11700-0. PMid:31420550 

    View Article      PubMed/NCBI     
  17. Wu, P.; Du, P.; Zhang, H.; Cai, C. Graphyne As a Promising Metal-Free Electrocatalyst for Oxygen Reduction Reactions in Acidic Fuel Cells: A DFT Study. The Journal of Physical Chemistry C 2012, 116, 20472-20479.

    View Article           
  18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian ̃16 Revision C.01, Gaussian Inc. Wallingford CT, 2016. 

  19. Serr, A.; Boyle, N. O. Convoluting UV-Vis spectra using oscillator strengths. 2017, DOI: 10.5281/zenodo.820871. 

  20. Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters 2004, 393, 51-57.

    View Article           
  21. Huff, G. S.; Gallaher, J. K.; Hodgkiss, J. M.; Gordon, K. C. No single DFT method can predict Raman cross-sections, frequencies and electronic absorption maxima of oligothiophenes. Synthetic Metals 2017, 231, 1-6.

    View Article           

Journal Recent Articles